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An automatic error-control technique is presented for the calculation of eigenlengths of 
systems of ordinary differential equations. The method appears to be computationally very 
stable with significant savings in computing time and effort when compared with conventional 
initial-value codes. Numerical examples are presented which demonstrate the efficacy of the 
method. 

1. INTRODUCTION 

Consider a linear first-order ordinary differential system in 2n dependent variables, 
subject to two-point boundary conditions which specify n of the dependent variables 
at one endpoint and the complementary set of n variables at the other endpoint. Such 
a two-point boundary-value problem (TPBVP) of the second kind is well known to 
have a natural association with a certain Riccati initial-value problem for an n x n 
matrix. If the left endpoint is located at x = 0, the eigenlength can be defined as a 
value of the right endpoint for which the associated homogeneous differential system 
subject to homogeneous boundary conditions of the second kind has a nontrivial 
solution. The smallest eigenlength [ 1 ] is identical with the right endpoint of the 
maximal interval of existence for the associated Riccati initial-value problem. The 
term “integration-to-blowup” is popularly used to describe the use of this fact to 
determine the smallest eigenlength by numerically integrating the Riccati initial-value 
problem until the matrix of dependent variables becomes large in some appropriate 
sense. Boland and Nelson (21 have obtained results which go far toward explaining 
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the frequently observed good accuracy of integration-to-blowup and which can be 
used to estimate this accuracy in any particular application, such as calculation of 
eigenlengths. The calculation of eigenlengths is one of the fundamental computational 
problems associated with nuclear reactors, and it has applications also in the areas of 
structural mechanics, quantum mechanics [3 1, and nuclear physics [4 J. 

Most modern initial-value codes provide automatic selection of step-size based 
upon specified local error tolerances, usually some combination of absolute and 
relative error. When such a code is used for the numerical solution of the Riccati 
initial-value problem, the step-size tends to become intolerably small as the 
independent variable approaches the critical length. In [2] this problem was circum- 
vented by using a minimum allowable step-size. However, this ad hoc device is 
ultimately unsatisfactory in that there is no clear-cut relation between the minimum 
step-size and the accuracy of the final answer. In the method we will describe in this 
paper, this problem is alleviated by using appropriate types of local error criteria. We 
will call this the square-error method and a tentative step in this method will be 
accepted or rejected depending on the estimated local truncation error per unit step in 
the dependent variable. This local truncation error will be required to be less than 
some multiple of (a measure of) the square of the dependent variable, hence the name 
“square error.” In this paper, we will apply this method to the computation of 
eigenlengths. In Section 2, we introduce the basic ideas and the theorems, and in 
Section 3, actual numerical examples are presented and compared with the results 
obtained by conventional methods. The results presented here suggest the square-error 
method can lead to efficient and effective computation of eigenlengths within the 
range of a prespecified error tolerance. Section 4 contains a few concluding remarks 
and suggestions for further research. 

2. THEORY 

Consider the linear two-point boundary-value problem (TPBVP) defined by the dif- 
ferential system 

u’(z) = A(z) u(z) + B(z) u(z), (2.la) 

-u’(z) = C(z) u(z) + D(z) u(z), (2.lb) 

subject to 

u(0) = 0, (2.2a) 

u(x) = 0, (2.2b) 

where u and u are n-vectors and the matrices A, B, C, and D are piecewise con- 
tinuous on [0, co). If x > 0 is such that there exists nonzero u, v satisfying (2.1) and 
(2.2), then x is termed an eigenlength of the differential system (2.1). Let x, denote 
the smallest eigenlength of this TPBVP (x, = +co if no finite critical length exists). 
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Then ] 11, x, is the right endpoint of the maximal interval of existence of the solution 
of the Riccati initial-value problem 

R’(z) = B(z) + A(z) R(z) + R(z) D(z) + R(z) C(z) R(z), (2.3a) 

R(0) = 0. (2.3b) 

In view of the above, it is natural to consider computing x, by numerical 
integration of (2.3) and approximating x, as the value of z at which R(z) or R’(z) 
exceeds some specified magnitude [5, 61. This is the technique known as 
“integration-to-blowup” and several workers [ 7-91 have reported good computational 
success in applying this method to vector systems. 

Boland and Nelson [2] have considered neutron transport problems where the coef- 
ficient matrices have the special properties 

B(z), C(z) * > * 0, (2.4a) 

A(z), D(z) > 0, (2.4b) 

which means [ 121 that the matrices B(z) and C(z) have nonnegative entries and that 
the matrices ,4(z) and D(z) have nonnegative entries except possibly along their 
diagonal. Under these conditions, it is shown in [2] that the inequalities (2.4a) and 
(2.4b) imply certain lower bounds on the matrix R and these bounds provide infor- 
mation for the problem of estimating x, from the results obtained by numerical in- 
tegration of (2.3a) and (2.3b). Before we present actual computational examples, we 
now state some theorems [2]. 

THEOREM 1. Suppose Q(Z) = min{ C;=, A ij(Z): 1 <j < n) 

a, = inf{a,(z): 0 < z < co }, 

and similarly b,, cO, and d,. If R is the solution of the Riccati equation, we define 

rj(z> = t Rij(Z), 
i=l 

I(Z) = min{rj(z): 1 <j < n). 

Then, if x,, E [0, x,) and r,, = r(xO), the inequality 

’ r(z) >, r. + 
I 

[b, + (a, + d,) r(s) + c,r’(s)] ds 
20 

is satisfied for z E [x,,, xc). 

THEOREM 2. Suppose c0 > 0. Let y, be the maximum of zero, -(a0 + d,)/2c,, 
and the largest real root of the quadratic equation c0x2 + (a, + d,)x + b, = 0 
(provided such roots exist; note the correction of the definition of y, as given in 121.) 
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Also, we define 

4b,c, - ho + do)* 
a=----e--’ 

p _ ao + do . 
2CO 

Suppose also that, in the notation of Theorem 1, the inequality r. > y, holds. For 
z E [x0, xc), r(z) is not less than f(r), wheref(z) is defined by the following equalities 
in the indicated parameter ranges: 

tan-’ [J*] = tan-’ [ :$$I + coal”(z --x0), a>0 

1 1 ----=-- 
f(z)+P r. + B 

t co@ -x0), 

ln 
[ 

f(z) + P - C-a)“’ r. + P - (-a)“’ 
f(z) + /I + (-a)“’ 1 [ = ln 

r, t B + (--a)“* I 
t 2c,(-a)“‘(z - x0), a < 0. 

This theorem gives a lower bound for R, from which upper bounds for x, can be 
determined. Two important corollaries follow from the above theorem. 

COROLLARY 1. Zfc,>Oandy,=-1, thenx,< 00. 

COROLLARY 2. Under the assumptions of L%eorem 2, the following bounds hold 
in the indicated parameter ranges: 

a = 0, 

1 
-0-m-a)'!2 

ln 
[ 

L+ B - (-a)“* 
r. t P + (-a)l’* 1 

-- 
’ 

a < 0. 

These bounds are the fundamental results which we propose to use in actual 
numerical examples to compute eigenlengths. 

For scalar problems (n = I), Scott [ 10, Exercise 1, p. 1531 observes that a bilinear 
transformation of dependent variables of the form 

R”= (R - l)(R + 1))’ 

in principle can be used to compute eigenlengths as zeros of R’ - 1. This basic idea is 
very appealing, but it is not clear how it can be extended to vector (v 3 1) problems. 
The simplest version of such transformations is perhaps the inverse transformation 
I? = S = R-r, but the authors in joint work with Wing [ 1 I] have shown that this ap- 
proach can fail rather dramatically for vector problems. 
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3. NUMERICAL EXAMPLES 

The basic computational procedure is the numerical integration of the initial-value 
problem (2.3a) and (2.3b), up to the point z =x,, that the difference between x,, and 
the upper bound for x,, as obtained from Corollary 2 is within the desired accuracy. 
The initial-value code used is a modified double-precision version of the Runge-Kut- 
ta-Fehlberg (RKF) code of Shampine and Allen [ 131. This is a fourth-order 
Rung+Kutta-type code in which two additional function evaluations provide an es- 
timate of the local truncation error for each tentative step. Such a step is accepted if 
the condition 

(3.la) 

is satisfied for each component yi of the vector of dependent variables, where 6yi is 
the estimated local truncation error per unit step in yi and E, and E, are respectively 
absolute and relative error tolerances. If (3.la) does not hold, then the tentative step 
is rejected and the error estimate is used to compute a new step-size for which the 
error criterion should be satisfied. At the end of a successful step the local error 
estimate is used to increase the size of the next tentative step to near the maximum 
value for which it is estimated that (3.la) will hold. The latter feature ensures the 
integration will proceed with approximately maximal efficiency compatible with the 
specified error criterion. 

In our numerical examples, apart from a straightforward application of RKF, we 
used the square-eror criterion. This consists of replacing (3.la) by the error criterion 

where the absolute-error tolerance E, and square-error tolerance s2 are provided. The 
basic idea suggesting this error criterion is as follows. Near the eigenlength the 
second term on the right-hand side of (3.lb) dominates, from which we conclude 

But near the eigenlength the quadratic term in (2.3a) dominates, and from this it is 
possible to conclude 

drj - 
-gy > C0r0rj. 

If we replace the left-hand side of the latter by 6ri/6x, then we conclude that (3.1 b) 
implies 

6X&-2. 

Our expectation is that the error criterion (3. lb) will permit control of the relative 
error in computed eigenlengths. As our examples will clearly indicate, this method 
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turns out to be consistently superior to the conventional RKF (in the context of 
integration-to-blowup). All calculations were carried out in double-precision 
arithmetic on an IBM 370, Model 145 at Texas Tech University. 

EXAMPLE 1. Consider the scalar problem 

u’= v, 

-v’ = u, 

u(0) = v(x) = 0. 

The associated Riccati initial-value problem is 

(3.2a) 

(3.2b) 

(3.2~) 

R'= l+ R2, (3.3a) 

R(O)=O. (3.3b) 

This problem has the well-known solution R(z) = tan(z), with the corresponding 
value x, = 7r/2 Z 1.57079633. For scalar systems with constant coefficients, the es- 
timates of Corollary 2 are exact. We present this problem to illustrate the claim that 
the technique of integration-to-blowup is capable of considerable accuracy, and also 
to indicate the superiority of the square-error method to the conventional RKF in the 
computation of eigenlengths. 

Table I contains the computed values of x, for different values of the accuracy E 
required in the computation of the eigenlength. In all cases, the relative-error 
tolerance E, and the absolute-error tolerance E, (or square-error tolerance s2) were 
taken to be the same as E. We note that for values of E ranging from 1O-3 to lo-*, 

TABLE I 

Relative Errors in x, (=(Exact-Computed)/Exact) and 
Required Function Evaluations for Example 1 with 

Various Error Tolerances and Integration-to-Blowup Procedures 

E 

RKF Square Error 

No. of function Relative error No. of function Relative error 
evaluations in x, evaluations in x, 

l.O(-3) 287 0.71(-3) 147 0.62(-3) 
l.O(-4) 849 I .20(-4) 348 1.49(-4) 
l.O(-5) 2868 1.19(-5) 427 1.24(-5) 
1 .O(-6) 9460 1.34(-6) 964 1.26(-6) 
l.O(-7) 3064 1 0.85(-7) 2105 0.90(-7) 
l.O(-8) 97624 0.69(-8) 4414 0.80(-8) 
l.O(-9) - - 8969 0.76(-9) 
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the square-error method consistently requires significantly fewer function evaluations, 
while keeping the values of x, well within the desired accuracy. Also, though not 
indicated in Table I, the actual computer time involved in the square-error method is 
significantly smaller than the conventional RKF method. For example, for 
E = E, = E, = 10e8, the conventional method took 2 min 40.68 set, while the square- 
error method required only 19.96 set; For E = 10P9, x, was not even computed using 
the conveentional RKF method because of the excessive computer-time requirements. 
Overall, the results seem to support amply our contention about the superiority of the 
square-error method. 

EXAMPLE 2. This is the problem of the form (2.3a) and (2.3b) with coefficient 
matrices defined by 

0 
B=C=A+I=D+I= oo25 ;*;5 , 

(. . 1 
o<z<5 

B=C=A+I=D+I=(ie5 ;:;75), 5 <z. 

The problem thus formed is a crude one-dimensional two-energy-group model of a 
fast nuclear reactor, with the regions 0 < z < 5 and z > 5 representing respectively the 
blanket and the core. In [I], the eigenlength was computed analytically, up to a 
transcendental equation in x, which was solved numerically, via the bisection method, 
on a Wang 2200 programmable calculator. The result was xc= 12.49498546, which 
is to be compared with our results using the method of integration-to-blowup with dif- 
ferent error criteria. 

Table II contains the computed values of x, within an accuracy E requested in the 
computation of eigenlengths. As in Example 1, the square error sZ, the relative error 
& ,, and the absolute error E, were taken to be the same as E. Guided by our results for 
Example 1, only three different values of E, namely, lo-‘, 10P6, and lo-‘, were tried. 
Again we note that consistently the number of function evaluations for the square- 
error method is significantly smaller than for the conventional RKF method. 
However, within the desired accuracy, the values of x, obtained via the square-error 

TABLE11 

Relative Errors in x, and Required Function Evaluations for Example 2 with 
Various Error Tolerances and Integration-to-Blowup Procedures 

Function evaluations Relative error Function evaluations Relative error in x, 
& for RKF in x, for RKF for square error for square error 

l.O(-3) 381 0.9 l(-4) 215 0.85(-5) 
1 .O(-6) 9908 0.89(-6) 1263 1.47(-6) 
I .O(-8) 100546 0.72(-8) 5308 0.64(-8) 
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method compare very favorably with the values of x, obtained via RKF. In fact, for 
E = IO-‘, the values of x, for the two methods differ only in the eighth decimal place. 
Also, as in Example 1, the actual computer time involved is significantly smaller in 
the square-error method. For example, for E = lo-*, the square-error method took 
58.95 set while the convenional RKF required 11 min 43.19 sec. Overall, this 
example again provides a definite indication of the superiority of the square-error 
method. 

EXAMPLE 3. Consider the equation 

(sgns)~(z,s)+a(s)n(z,s)=Lk(s)l’ n(z,s’)ds’, o<z<x (3.4a) 
-1 

subject to the conditions 
n(0, s) = 0, O<s<l, (3.4b) 

n(x, s) = 0, -1 <s<o, (3.4c) 

where a(s) and k(s) are real piecewise continuous functions on j s I< 1. For fixed A, 
we want to compute the interval lengths x-such that (3.4) has a nontrivial solution. 
This type of equation arises in the study of particle transport in a slab [ 14-161. 

If we make the substitutions 

u(z, s) = n(z, s), s>o (3.5a) 

v(z, s) = n(z, s), s < 0, (3Sb) 

then (3.4) can be written as 

g (z, S) + U(S) U(Z, S) = I@) ii,: U(Z, s’) ds’ + i”, 4~ ~‘1 ds’! y (3.64 

- E (z, s) + a(s) v(z, s) = M(s) 1 Jo’ u(z, s’) ds’ + .ir, v(z, s’) ds’/ , (3.6b) 

u(0, s) = 0, (3.6~) 

v (x, s) = 0. (3.6d) 

The integrals can be replaced with some type of numerical quadrature scheme, 
typically a Gauss-Legendre quadrature. Then (3.6) becomes a system of ordinary dif- 
ferential equations of the form 

u’=Au+Bv, (3.7a) 

-v' = Cu + Dv, (3.7b) 

u(0) = 0, (3.7c) 

v(x) = 0. (3.7d) 
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TABLE III 

Results for x, for Different Values of I 

I 
Scott [18] 

XC 

Wing 1191 
XC 

Allen [17] 

XC 

2 2.9617 2.97266 NR” 
5 I .0744 1.08398 1.1292 

10 0.52000 0.52930 0.5452 
20 0.25581 0.26562 0.2680 
30 0.16962 NR” 0.1766 
40 0.12687 0.13672 0.1318 

’ NR indicates that no results were given for this case. 

We shall consider one example of this class of problem. This has been studied by 
Allen [ 171, Scott [ 181, and Wing [ 191. Let 

4s) = ISI, 

k(s) = e-‘lSi. 

Apart from investigating the application of the square-error method to this type of 
pseudo-transport problem, the results for this problem should be of special interest 
because of somewhat conflicting reports in the literature. Table III presents the 
quoted results in the literature; we note that the results for eigenlengths in [ 171 tend 
to be slightly higher than those in Ref. [ 191, while the results in Ref. ] 19) are higher 
than the corresponding results in Ref. [IS]. One possible source of discrepancy could 
be due to the quadrature scheme and also the number of quadrature points used in 
replacing the integrals in (3.6). Only in Ref. [ 171, it is mentioned that a eight-point 
Gauss formula was used to approximate the quadratures. 

To investigate the effect of the number of quadrature points, we used a 
Gauss-Legendre quadrature scheme and varied the number of quadrature points from 
2 to 16 for each value of 1. As the number of quadrature points was increased from 2 
to 4, the value of x, dropped considerably for all values of h and for both the conven- 
tional RKF method and the square-error method. However, both methods gave essen- 
tially the same value of xc, the primary difference being that the square-error method 
required considerably fewer function evaluations and less computing time. For exam- 
ple, for ,l = 2 with two quadrature points, the conventional RKF method required 
29 min 9.87 set with E = lOwE, whereas the square-error method required 1 min 
42.31 sec. As in Examples 1 and 2, this again indicates the superiority of the square- 
error method. As the number of quadrature points strongly influenced computed 
values of xc, we then increased the number of quadrature points until convergence in 
the values of x, was obtained within the accuracy requested. This was done only for 
the square-error method because of excessive time requirements in using RKF and 
also because the computed values of x, were essentially identical for the two methods. 
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TABLE IV 

Computed Values of x, Using the Square-Error Method with 
E = E, = E, = 10-J 

No. of quadrature 
points X‘ 

2 8 2.9615 
16 2.9612 

5 8 1.0743 
16 1.0743 

10 8 0.5200 
16 0.5200 

20 8 0.2558 
16 0.2558 

30 8 0.1696 
16 0.1696 

40 8 0.1269 
16 0.1268 

The results are indicated in Table IV which contains the computed values of x, for 
the square-error method using 8 and 16 quadrature points for each values of 1. Note 
that the values of x, are identical, within the requested accuracy, with those reported 
in Ref. [18]. 

4. CONCLUDING REMARKS 

In this paper we have presented a computational technique for approximating the 
critical or the eigenlength for ordinary differential equations within a specified 
tolerance. As our examples clearly indicate, this automatic error-control technique is 
quite superior to the conventional method and seems capable of handling both scalar 
and vector problems. There is significant savings in computing effort and time when 
this new technique is used in determining critical lengths. 

There are a number of features of the technique which warrant further study. One 
possible source of further research would be to compare the square-error method with 
the arclength method [20, Especially Chap. 121. This method involves a preliminary 
transformation of the Riccati equation so that the arclength becomes the independent 
variable. One of the authors has conducted some preliminary experiments and the 
results seem to indicate that the arclength procedures are superior to square error for 
fairly large error tolerances, but that the square-error procedure becomes preferable 
as the specified error-tolerance decreases. It is hoped that this can be pursued further 
and reported elsewhere. (We note parenthetically that implementation of the arclength 
method will require somewhat more effort than is obvious at first thought. The 
difficulty occurs in problems having discontinuities in the coeffkient matrices (e.g., 
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Example 2). The arclength transformation changes these from discontinuities in the 
independent variable to discontinuities in the dependent variables, and the latter are 
substantially more difficult to integrate numerically. In fact, Shampine, Watts, and 
Davenport [ 211 indicate that the type of code used in our work cannot successfully 
integrate such problems). 

In our work, we have basically used a Rung*Kutta-type code. Other basic in- 
tegration algorithms should also be considered for possible extension of this study, 
primarily because recent studies [21] have indicated that Runge-Kutta-type codes 
probably should not be used when extremely high accuracy is sought. The eventual 
aim of all these would be to produce an efficient, effective, and robust user-oriented 
subroutine for computing critical lengths, with the user required to supply only an 
error tolerance, aside from the quantities necessary to define the problem. Further 
research in this direction could be very rewarding. 
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